Data Science Bundle

Call us directly at , : +91-7095447721, +91-9533344772 for paying the fees, seasonal discounts or any other information.
Register here for any FREE demos for this course and many other courses.
Data Science Course Bundle
What you will get when you take this course:

Data Science bundle consists of 8 Modules:

  1. FUNDAMENTALS OF SQL
  2. PYTHON FOR DATA SCIENCE
  3. STATISTICAL METHODS
  4. POWER BI
  5. MACHINE LEARNING IN AI
  6. DEEP LEARNING IN AI
  7. NATURAL LANGUAGE PROCESSING (NLP) IN AI
  8. COMPUTER VISION IN AI

Data Science Syllabus

MODULE 1: FUNDAMENTALS OF SQL

  • DBMS
  • DBMS vs RDBMS
  • SQL
  • Installation of Oracle / MySQL
  • DDL
  • DQL
  • DML
  • DCL
  • TCL
  • Arithmetic Operators
  • Relational Operators
  • Logical Operators
  • Primary key
  • Foreign key
  • Composite key
  • Inner Join
  • Left Join
  • Right Join
  • Outer (Full) Join
  • ORDER BY
  • GROUP BY
  • Aggregate functions in SQL
  • SELECT in Sub queries
  • INSERT in Sub queries
  • UPDATE in Sub queries
  • DELETE in Sub queries
  • Creating view from a table
  • Creating view from multiple tables
  • Updating data into a view

MODULE 2: PYTHON FOR DATA SCIENCE

  • Advantages of Python
  • Python compiler and PVM
  • Python instillation and environment
  • strings
  • char
  • lists
  • tuples
  • range
  • sets
  • dictionaries
  • if statement
  • if…else statement
  • if…elif…else statement
  • while loop
  • for loop
  • break statement
  • continue statement
  • pass statement
  • Array creation
  • Array attributes
  • 1D and 2D Arrays
  • Matrix
  • Built in and User defined functions
  • Writing your own functions
  • Importing functions
  • Modules
  • Packages
  • Imports
  • Classes and Objects
  • Encapsulation
  • Abtraction
  • Inheritance
  • Polymorphism
  • Matching strings
  • Searching for strings
  • Finding all strings
  • Splitting a string into pieces
  • Replacing strings
  • Test files
  • Binary files
  • Connecting to Oracle database
  • Connecting to MySQL database
  • Series
  • Dataframes
  • Creation of dataframes from different sources
  • Viewing data in dataframe
  • Operations on dataframe
  • Handling missing data
  • Selecting rows, columns
  • Grouping the rows
  • Regular expressions in pandas
  • Window functions in pandas
  • Aggregate functions in pandas
  • Joining the dataframes
  • Date Time Indexing
  • Line plot
  • Bar graph
  • Pie chart
  • Subplots
  • Histogram
  • Distribution plot
  • Kde plot
  • Count plot
  • Box plot
  • Scatter plot
  • Sub plots
  • Lmplot
  • Pair plots

MODULE 3: STATISTICAL METHODS

  • What is statistics?
  • Types of statistics
  • Descriptive statistics
  • Inferential statistics
  • Population
  • Sample
  • Variable (discrete and continuous)
  • Data and types of data
  • Qualitative (nominal and ordinal)
  • Quantitative (interval scale and ratio scale)
  • Mean
  • Median
  • Mode
  • Probability with replacement
  • Probability without replacement
  • Probability Mass Function (PMF)
  • Probability Density Function (PDF)
  • Skewness
  • Kurtosis
  • variance
  • std
  • percentile
  • quartile
  • range
  • IQR
  • Empirical Rule
  • Problems on Empirical Rule
  • Chebyshev’s Theorem
  • Normal distritution
  • Standard normal distribution
  • Sampling distribution of sample means
  • Central limit theorem
  • T- Distribution
  • Student T- Test
  • Chi Square Test (Goodness of Fit)
  • Binomial distribution
  • Bernoulli distribution
  • Geometric distribution
  • Hypergeometric distribution
  • Poisson distribution
  • Upper tail test
  • Lower tail test
  • Two tail test
  • 1-way ANOVA
  • 2-way ANOVA

MODULE 4: POWER BI

  • Power BI Architecture
  • Power Query Editor
  • Power Pivot
  • Power View
  • Power Service
  • Power BI Desktop installation
  • Data types
  • Sorting data
  • Filtering data
  • Transformations on columns
  • M - language
  • Creating different tables
  • Joining the tables
  • Fuzzy matching
  • Grouping data
  • Extracting data
  • Statistical calculations
  • Pivoting a column
  • Adding new columns
  • Query dependencies
  • Tasks done in Power Pivot
  • Different types of schemas
  • Different types of relationships
  • DAX calculation types
  • Measures
  • calculated columns
  • DAX operators
  • Text Functions
  • Logical Functions
  • Date and Time Functions
  • Filter Functions
  • Math & Statistical Functions
  • Time Intelligence Functions
  • Slicer
  • Pie chart
  • Donut chart
  • Treemap
  • Pie chart
  • Donut chart
  • Different types of bar charts
  • Column charts
  • Scatter chart
  • Line chart
  • Area chart
  • Line and Stacked column chart
  • Ribbon chart
  • Waterfall chart
  • KPI charts
  • Gauge chart
  • Funnel chart
  • Visualizing geographical data
  • Table visual
  • Matrix visual
  • Buttons creation
  • Q&A text box
  • Difference between dashboard and report
  • Power BI Service

MODULE 5: MACHINE LEARNING IN AI

  • One hot encoding using dummy variables
  • One hot encoding using One hot encoder
  • Simple Linear regression
  • Multiple Linear regression
  • Polynomial Linear regression
  • Ridge regression
  • Bias and Variance tradeoff
  • Lasso regression
  • Elasticnet regression
  • Logistic regression
  • Naive Bayes (Gaussian NB and Multinomial NB)
  • KNN Classifier
  • SVM
  • Regularization
  • Kernel Trick
  • Decision Tree
  • Entropy
  • Gini Index
  • Random Forest
  • Conusion Matrix
  • Bootstrapping, Bagging and Boosting
  • K-Means Clustering
  • Elbow technique
  • Apriori Algorithm
  • Different types of pipe lines
  • ML Pipe line construction
  • Eigen Vectors and Eigen Values
  • Covariance
  • Selecting appropriate model for our data

MODULE 6: DEEP LEARNING IN AI

  • Biological Neural Network
  • Artificial Neural Network
  • Perceptrons
  • Layers of a Network
  • Identity Function
  • Binary step function or Threshold function
  • Logistic function or Sigmoid function
  • ReLU function
  • Hyperbolic Tangent function
  • Softmax function
  • ANN
  • ANN with Activation functions
  • Variables
  • Constants
  • Placeholders
  • Graph / Tensor / Session

MODULE 7: NATURAL LANGUAGE PROCESSING IN AI (NLP)

  • Tokenization
  • Stemming
  • Lemmatization
  • Stop words
  • POS
  • CountVectorizer
  • Tf-idf Vectorizer

MODULE 8: COMPUTER VISION IN AI